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LINEARIZED EQUATIONS OF NONLINEAR ELASTIC

DEFORMATION OF THIN PLATES

UDC 539.3;534.1A. E. Alekseev

A linearized system of equations governing elastic deformation of a thin plate with arbitrary boundary
conditions at its faces in an arbitrary curvilinear coordinate system is proposed. This system of
equations is the first approximation of a one-parameter sequence of equations of two-dimensional
problems obtained from the initial three-dimensional problem by approximating unknown functions
by truncated series in Legendre polynomials. The stability problem of an infinite plate compressed
uniaxially is solved. The results obtained are compared with the existing solutions.

The existing procedures of constructing equations governing elastic deformation of plates can be arbitrarily
divided into two groups. The first group consists of methods based on simplifying hypotheses (classical theory,
equations of the Timoshenko type, etc.). The second group comprises methods that reduce the initial three-
dimensional problem to a sequence of two-dimensional problems (asymptotic methods and expansion in thickness
with the use of various basis functions). As the basis functions, the Legendre polynomials are usually used (see,
e.g., [1]). Ivanov [2] proposed a method of constructing equations of elastic deformation of plates and shells of
constant thickness with arbitrary boundary conditions for displacements and stresses at the surfaces. This method
is based on several approximations of the same unknown functions by truncated series in Legendre polynomials.
Using this method, Alekseev [3] obtained a one-parameter family of successive approximations of the equations of
a deformable layer of variable thickness in arbitrary curvilinear coordinates. Alekseev [4] generalized the method
proposed in [2, 3] to nonlinear elastic deformation of plates.

In the present paper, the system of equations of the first approximation of the sequence of the equations
obtained in [4] is linearized.

1. Equations of the Nonlinear Theory of Elasticity in Arbitrary Curvilinear Coordinates. We
consider an arbitrary curvilinear system of Lagrangian coordinates ξi (i = 1, 2, 3). The equations of equilibrium of
a continuous medium are written in the vector form as

t̂
i
,i + f̂ = 0, t̂

i
= Jti, f̂ = Jf , ti = σijgj , (1.1)

where gi is the covariant basis of the curvilinear coordinate system ξi in a deformed state, J = g1 · (g2 × g3) is the
Jacobian of transformation of the coordinates, σij are the components of the Cauchy stress tensor, and f is the
vector of body forces.

The components of the Green–Lagrange strain tensor εij are related to the displacement vector u by the
nonlinear relations

2εij =
0
gi · u,j +

0
gj · u,i + u,i · u,j , (1.2)

where
0
gi is the covariant basis of the coordinate system ξi in the undeformed state; the superimposed zero shows

that the quantity corresponds to the undeformed state.
The covariant basis of the coordinate system ξi in the deformed state is

gi =
0
gi + u,i. (1.3)
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Hooke’s law is taken in the form

τ ij =
0

Cijksεks, (1.4)

where τ ij are the contravariant components of the second Piola–Kirchhoff stress tensor, and
0

Cijks are the con-

travariant components of the fourth-rank tensor, which satisfy the symmetry conditions
0

Cijks =
0

Cjiks =
0

Cksij .
In the coordinate system ξi, the following equality is valid:

0

Jτ ij = Jσij . (1.5)

Here
0

J =
0
g1 · (

0
g2 ×

0
g3) is the Jacobian of coordinate transformation in the initial-space metric.

Below, the boundary conditions refer to the undeformed state.

We assume that the boundary
0

S of an undeformed body consists of two parts: part
0

Su, where the displace-
ments

u
∣∣∣0
Su

= u∗ (1.6)

are specified, and part
0

Sσ, where the stresses

τ ijgj
0
νi

∣∣∣0
Sσ

= p∗ (1.7)

are specified. Here
0
νi are the direction cosines of the outward normal vector to the boundary

0

S and u∗ and p∗ are

the vector functions specified on
0

S.
Relative to the undeformed state, the boundary-value problem (1.1)–(1.7) is taken to be the initial boundary-

value problem of the nonlinear theory of elasticity.
2. Linearized Equations of the First Approximation in the Case where the Current State is

Described by Geometrically Nonlinear Equations. We consider a plate of constant thickness 2h. In the

undeformed state, the plate occupies the volume
0

V bounded by the faces
0

S+ and
0

S− and edge surface
0

Σ.
Let xi be the Cartesian coordinates. In the undeformed state, the middle surface of the plate coincides with

the coordinate plane x3 = 0, and the faces
0

S+ and
0

S− correspond to x3 = +h and x3 = −h, respectively.
We choose the curvilinear system of Lagrangian coordinates ξk in such a manner that the ξ3 axis coincides

with the x3 axis in the undeformed state. The coordinates x3 and ξ3 are related by the formula x3 = hξ3. In the

undeformed state, the position of any internal point in the plate of volume
0

V is determined by the vector function
of the curvilinear coordinates ξk:

0

R(ξk) =
0
r(ξα) + hnξ3 (ξk ∈ Vξ ⊂ R3). (2.1)

Here Vξ = {ξk | ξα ∈ Sξ ⊂ R2, ξ3 ∈ [−1, 1]} and n is the unit vector directed along the x3 axis.
It follows from (2.1) that the covariant local basis of the coordinate system ξk in the undeformed state has

the form

0
gα =

0

R,α =
0
r,α,

0
g3 =

0

R,3 = hn. (2.2)

One can see from relations (2.2) that the vectors
0
gα depend only on the coordinates ξα, whereas the vector

0
g3 is

independent of ξk.
Since ξ3 ∈ [−1, 1], the unknown functions u and t̂

i
can be expanded in series in terms of Legendre polyno-

mials:

u =
∞∑
k=0

[u]kPk, t̂
i

=
∞∑
k=0

[̂t
i
]kPk.

Here Pk(ξ3) are the orthogonal Legendre polynomials and [u]k and [̂t
i
]k are the expansion coefficients which depend

on the coordinates {ξα} ∈ Sξ ⊂ R2:
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[u]k =
1 + 2k

2

1∫
−1

uPk dξ
3, [̂t

i
]k =

1 + 2k
2

1∫
−1

t̂
i
Pk dξ

3.

Alekseev [4] obtained an one-parameter family of successive Nth approximations of the nonlinear equations
of elastic deformation of plates. The first approximation (N = 0) is of greatest interest. In this case, we introduce
the following two approximations of the displacement vector u:

u ∼ U ′ =
0
gα
(

0
gα ·

1∑
k=0

[u]kPk
)

+
0
g3(

0
g3 · [u]0),

(2.3)

u ∼ U ′′ =
0
gα
(

0
gα ·

3∑
k=0

[u]kPk
)

+
0
g3
(

0
g3 ·

2∑
k=0

[u]kPk
)
.

In accordance with (2.3), we use the following approximations of the covariant basis of the deformed state
gi in (1.3):

gα ∼ Gα =
0
gα +U ′,α, g3 ∼ G3 =

0
g3 +U ′′,3. (2.4)

In (2.4), the vectors U ′ and U ′′ are approximations of the displacement vector u, which differ in the number of
terms in the series. They are used to calculate the derivative with respect to the coordinates ξα and the coordinate
ξ3, respectively.

The equations of equilibrium (1.1) are approximated by the relations
0
gα · (T̂

′i
,i + F̂ ) = 0,

0
g3 · (T̂

′′i
,i + F̂ ) = 0. (2.5)

Here, the quantities T̂
′i

, T̂
′′i

, and F̂ correspond to the truncated series

T̂
′α

=
1∑
k=0

[̂t
α

]kPk, T̂
′′α

= [̂t
α

]0, T̂
′3

= T̂
′′3

=
0
gα

2∑
k=0

([̂t
3
]k · 0
gα)Pk +

0
g3

1∑
k=0

([̂t
3
]k · 0
g3)Pk,

F̂ =
0
gα

1∑
k=0

([ f̂ ]k · 0
gα)Pk +

0
g3([f̂ ]0 · 0

g3).

Thus, the same quantities t̂
α

in (2.5) are approximated by two expressions: the approximation T̂
′α

is used
in the equations of equilibrium in the coordinate plane ξα, whereas the approximation T̂

′′α
is used to formulate the

condition of equilibrium in the transverse direction.
The components of the Green–Lagrange strain tensor εij (1.2) are approximated as

εαβ ∼ 2Eαβ =
0
gβ ·U ′,α +

0
gα ·U ′,β +U ′,α ·U

′
,β ,

ε3α ∼ 2E3α =
0
gα ·U ′′,3 +

0
g3 ·U ′,α +U ′,α ·U

′′
,3, ε33 ∼ E33 =

0
g3 ·U ′′,3 + 0.5U ′′,3 ·U

′′
,3.

In addition to the current state, we consider a perturbed state corresponding to perturbed displacements Ũ
′

and Ũ
′′
:

Ũ
′

= U ′ + ∆U ′, Ũ
′′

= U ′′ + ∆U ′′.

Here, the perturbation vectors ∆U ′ and ∆U ′′ are truncated series similar to series (2.3).
For the vectors of the covariant basis of the perturbed state, we obtain

G̃i = Gi + ∆Gi, ∆Gα = ∆U ′,α, ∆G3 = ∆U ′′,3. (2.6)

According to [4], the linearized system of equations of the first approximation comprises:
— the equations of equilibrium [approximations of Eqs. (1.1)]

0
gα · (∆T̂

′i
,i + ∆F̂ ) = 0,

0
g3 · (∆T̂

′′i
,i + ∆F̂ ) = 0; (2.7)

— Hooke’s law relations [approximations of Eqs. (1.4) written in the form of truncated series]
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∆T̂
′α

=
1∑
k=0

Pk
1 + 2k

2

1∫
−1

0

JC̃αjmn(Gm ·∆Gn)GjPk dξ
3,

∆T̂
′′α

=
1
2

1∫
−1

0

JC̃αjmn(Gm ·∆Gn)GjP0 dξ
3, (2.8)

∆T̂
3

= ∆T̂
′3

= ∆T̂
′′3

=
0
gα

2∑
k=0

(
Pk

1 + 2k
2

0
gα ·

1∫
−1

0

JC̃3jmn(Gm ·∆Gn)GjPk dξ
3
)

+
0
g3

1∑
k=0

(
Pk

1 + 2k
2

0
g3 ·

1∫
−1

0

JC̃3jmn(Gm ·∆Gn)GjPk dξ
3
)

;

— the boundary conditions at the faces [approximations of conditions (1.6) and (1.7)]

∆U ′′
∣∣∣0
S+
u

= ∆u∗, ∆U ′′
∣∣∣0
S−u

= ∆u∗,
∆T̂

3

0

J

∣∣∣0
S+
σ

= ∆p∗,
∆T̂

3

0

J

∣∣∣0
S−σ

= ∆p∗. (2.9)

In the equations of equilibrium (2.7), the perturbation vector of the body forces ∆F̂ is approximated by the
truncated series

∆F̂ =
0
gα

1∑
k=0

([∆f̂ ]k · 0
gα)Pk +

0
g3([∆f̂ ]0 · 0

g3)P0.

In Eqs. (2.8), the components of the fourth-rank tensor C̃ijmn are given by

C̃ijmn =
0

Cijmn + τ inGmj , Gmj = Gm ·Gj , Gj ·Gi = δij ,

where δij is the Kronecker symbol and τ ij are related to the approximations Eks by Hooke’s law (1.4). The
linear system (2.6)–(2.9) is supplemented by the following linearized boundary conditions at the edge surfaces
[approximations of the boundary conditions (1.6) and (1.7)]:

∆U ′
∣∣∣ 0
Σu

= ∆U ′∗,
∆T̂

α
ν0
α

J0

∣∣∣ 0
Σσ

= ∆P ′∗ (
0

Σu ∪
0

Σσ =
0

Σ),

∆T̂
α

=
0
gγ(∆T̂

′α
· 0
gγ) +

0
g3(∆T̂

′′α
· 0
g3).

Here, the vectors ∆U ′∗ and ∆P ′∗ are the truncated series

∆U ′∗ =
0
gα(

0
gα ·

1∑
k=0

[∆u∗]kPk) +
0
g3(

0
g3 · [∆u∗]0P0),

∆P ′∗ =
0
gα(

0
gα ·

1∑
k=0

[∆p∗]
kPk) +

0
g3(

0
g3 · [∆p∗]0P0).

The linear system (2.7)–(2.9) is a linearized system of nonlinear equations of elastic deformation of thin
plates (first approximation) whose differential order is equal to ten [4], and it does not depend on the boundary
conditions at the faces (stresses or displacements can be specified).

3. Linearized Equations of the First Approximation in the Case where the Current State is
Described by Geometrically Linear Equations. Let

gα '
0
gα. (3.1)

Accordingly, in (2.2) we have

Gα '
0
gα. (3.2)

Substituting (3.1) and (3.2) into Eqs. (2.7)–(2.9), we obtain a linearized system of equations for thin plates, which
comprises:
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— the equations of equilibrium
0
gα · (∆T̂

′i
,i + ∆F̂ ) = 0,

0
g3 · (∆T̂

′′i
,i + ∆F̂ ) = 0; (3.3)

— Hooke’s law equations

∆T̂
′α

=
1∑
k=0

Pk
1 + 2k

2

1∫
−1

0

JC̃αjmn(
0
gm ·∆Gn)

0
gjPk dξ

3,

∆T̂
′′α

=
1
2

1∫
−1

0

JC̃αjmn(
0
gm ·∆Gn)

0
gjP0 dξ

3, (3.4)

∆T̂
3

= ∆T̂
′3

= ∆T̂
′′3

=
0
gα

2∑
k=0

(
Pk

1 + 2k
2

1∫
−1

0

JC̃3αmn(
0
gm ·∆Gn)Pk dξ3

)

+
0
g3

1∑
k=0

(
Pk

1 + 2k
2

1∫
−1

0

JC̃33mn(
0
gm ·∆Gn)Pk dξ3

)
;

— the boundary conditions at the faces

∆U ′′
∣∣∣0
S+
u

= ∆u∗, ∆U ′′
∣∣∣0
S−u

= ∆u∗,
∆T̂

3

0

J

∣∣∣0
S+
σ

= ∆p∗,
∆T̂

3

0

J

∣∣∣0
S−σ

= ∆p∗. (3.5)

In Eqs. (3.4), the components of the fourth-rank tensor C̃ijmn take the form

C̃ijmn =
0

Cijmn + τ in
0
gmj ,

0
gmj =

0
gm · 0

gj . (3.6)

As in the previous case, the differential order of the linear system (3.3)–(3.5) is equal to ten.
4. Stability of a Compressed Infinite Plate. We consider an infinitely long plate of width l and

thickness 2h. Body forces are ignored (f = 0).
We introduce the coordinate system ξk:

xα = ξα, x3 = hξ3,
0
gα = eα,

0
g3 = he3,

0

J = h, (4.1)

where ei is the orthonormal basis of the Cartesian coordinate system xi.
We consider the stability problem of the plate with simply supported edges, which is compressed by a load

of intensity p along the x1 axis.
We use the following assumptions:
— the subcritical state is described by geometrically linear equations; therefore, we consider the linearized

system (3.3)–(3.5);
— the subcritical stressed state is uniform:

τ11 = −p, τ13 = 0, τ33 = 0; (4.2)

— the plate material is isotropic:
0

Cijmn = λ
0
gij

0
gmn + µ(

0
gim

0
gjn +

0
gin

0
gjm) (4.3)

(λ and µ are the Lamé parameters) and by virtue of (4.1), we have
0
gαβ = δαβ ,

0
gα3 = 0,

0
g33 = 1/h2.

It follows from (4.2) and (4.3) that the only nonzero components C̃ijmn in (3.6) are

C̃1111 = λ+ 2µ− p, C̃1331 = (µ− p)/h2, C̃3333 = (λ+ 2µ)/h4,

C̃1133 = C̃3311 = C̃1313 = C̃3131 = C̃3113 = µ/h2.
(4.4)
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For plane strain, we have

∆G2 = 0, e2 ·∆U ′′ = 0. (4.5)

We introduce the following notation:

e1 ·∆U ′′ = u+ ψP1 + [u]2P2 + [u]3P3, e3 ·∆U ′′ = v + [v]1P1 + [v]2P2. (4.6)

Using the properties of the Legendre polynomials and relations (4.1)–(4.6), from Hooke’s law relations (3.4)
we obtain

e1 ·∆T̂
′1

= (λ+ 2µ− p)(u,1P0 + ψ,1P1) + λ([v]1P0 + 3[v]2P1),

e3 ·∆T̂
′′1

= (µ− p)hv,1 + µ([u]1 + [u]3),
(4.7)

e1 ·∆T̂
3

= (µ/h)(([u]1 + [u]3 + hv,1)P0 + 3[u]2P1 + 5[u]3P2),

e3 ·∆T̂
3

= λ(u,1P0 + ψ,1P1) + ((λ+ 2µ)/h)([v]1P0 + 3[v]2P1).

We call the unknown functions u, v, and ψ and their first derivatives that enter into (4.7) the main unknowns.
The functions [u]2, [u]3, [v]1, and [v]2 are called the additional unknowns.

Since the faces x3 = ±h are stress-free, the boundary conditions (3.5) become

∆T̂
3

0

J

∣∣∣0
S±

= 0. (4.8)

We substitute the last two relations in (4.7) into (4.8). As a result, we obtain a system of four linear algebraic
equations for four additional unknown functions, whose solution has the form

[u]2 = 0, [u]3 = −1
6

(ψ + hv,1), [v]1 = − hλ

3(λ+ 2µ)
u,1, [v]2 = − hλ

λ+ 2µ
ψ,1. (4.9)

Inserting (4.9) into (4.7) and the resulting expressions into (3.3), we arrive at the linear system of three
ordinary differential equations for three main functions u, v, and ψ:

u,11 = 0,
( (λ+ 2µ)2 − λ2

λ+ 2µ
− p
)
ψ,11 −

5µ
2h2

(ψ + hv,1) = 0, ψ,1 +
(

1− 6p
5µ

)
hv,11 = 0. (4.10)

The plate is simply supported at the edge surfaces x = 0 and x = l, which is equivalent to the following
boundary conditions:

u = 0, v = 0, ψ,1 = 0 for x = 0, x = l. (4.11)

Eliminating the function ψ from (4.10) and (4.11), we obtain the homogeneous linear ordinary fourth-order
differential equation subject to homogeneous boundary conditions( (λ+ 2µ)2 − λ2

λ+ 2µ
− p
)(5µ

6
− p
)
v,1111 +

5µ
2h2

pv,11 = 0,
(4.12)

v = 0, v,11 = 0 for x = 0, x = l.

We seek the solution of problem (4.12) in the form

v = C sin (mπx/l). (4.13)

Substitution of (4.13) into (4.12) yields the equation for determining the critical load p( (λ+ 2µ)2 − λ2

λ+ 2µ
− p
)(5µ

6
− p
)
m2α2 − 5µ

2
p = 0, (4.14)

where α = hπ/l.
For m = 1, the quadratic equation (4.14) takes the form

ap2
∗ − bp∗ + c = 0,

(4.15)

a =
4α4

15(1− ν)
, b =

4α2

5(1− ν)
+
α2

3
+ 1, c = 1,
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where ν is Poisson’s ratio, p∗ = p/pe, pe = α2E/(3(1− ν2)) is the Euler critical load, and E is Young’s modulus.
With accuracy to α4, the solution of Eq. (4.15) is written as

p∗ ' 1− α2 (17− 5ν)/(15(1− ν)). (4.16)

The critical load obtained on the basis of the refined theory of plates has the form [5]:

p1 ' 1− α24/(5(1− ν)). (4.17)

The critical load determined in the three-dimensional linearized formulation with allowance for small subcritical
strains was obtained in [6]:

p2 ' 1− α2
( 2(6− ν)

15(1− ν)
+

1
3

)
. (4.18)

Comparing the critical loads (4.16)–(4.18), we obtain the estimates

p∗ 6 p2 < p1. (4.19)

The equality sign in (4.19) is valid for ν = 0.
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